Improved Cuckoo Search Based Neural Network Learning Algorithms for Data Classification Abdullah

نویسنده

  • Tun Hussein
چکیده

Artificial Neural Networks (ANN) techniques, mostly Back-Propagation Neural Network (BPNN) algorithm has been used as a tool for recognizing a mapping function among a known set of input and output examples. These networks can be trained with gradient descent back propagation. The algorithm is not definite in finding the global minimum of the error function since gradient descent may get stuck in local minima, where it may stay indefinitely. Among the conventional methods, some researchers prefer Levenberg-Marquardt (LM) because of its convergence speed and performance. On the other hand, LM algorithms which are derivative based algorithms still face a risk of getting stuck in local minima. Recently, a novel meta-heuristic search technique called cuckoo search (CS) has gained a great deal of attention from researchers due to its efficient convergence towards optimal solution. But Cuckoo search is prone to less optimal solution during exploration and exploitation process due to large step lengths taken by CS due to Levy flight. It can also be used to improve the balance between exploration and exploitation of CS algorithm, and to increase the chances of the egg’s survival. This research proposed an improved CS called hybrid Accelerated Cuckoo Particle Swarm Optimization algorithm (HACPSO) with Accelerated particle Swarm Optimization (APSO) algorithm. In the proposed HACPSO algorithm, initially accelerated particle swarm optimization (APSO) algorithm searches within the search space and finds the best sub-search space, and then the CS selects the best nest by traversing the sub-search space. This exploration and exploitation method followed in the proposed HACPSO algorithm makes it to converge to global optima with more efficiency than the original Cuckoo Search (CS) algorithm.

منابع مشابه

Weight Optimization in Recurrent Neural Networks with Hybrid Metaheuristic Cuckoo Search Techniques for Data Classification

Recurrent neural network (RNN) has been widely used as a tool in the data classification. This network can be educated with gradient descent back propagation. However, traditional training algorithms have some drawbacks such as slow speed of convergence being not definite to find the global minimum of the error function since gradient descent may get stuck in local minima. As a solution, nature...

متن کامل

Training Recurrent Neural Networks by a Hybrid PSO-Cuckoo Search Algorithm for Problems Optimization

Because of computational drawbacks of conventional numerical methods in solving complex optimization problems, researchers may have to rely on meta-heuristic algorithms. Particle swarm optimization (PSO) is one of the most widely used algorithms due to its simplicity of implementation and fast convergence speed. Also, the cuckoo search algorithm is a recently developed meta-heuristic optimizati...

متن کامل

Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets

Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...

متن کامل

Cuckoo Search based Hybrid Classification Techniques

Data classification is one of the major tasks in data mining that organizes data in the proper manner to provide enhanced functionality to extract useful information from that data. There are various supervised and unsupervised machine learning techniques like FNN (Fuzzy Neural Network) presented by the researchers to provide an enhanced classification of the dataset. But the performance of the...

متن کامل

CSBPRNN: A New Hybridization Technique Using Cuckoo Search to Train Back Propagation Recurrent Neural Network

Nature inspired metaheuristic algorithms provide derivative-free solution to optimize complex problems. Cuckoo Search (CS) algorithm is one of the most modern addition to the group of nature inspired optimization metaheuristics. The Simple Recurrent Networks (SRN) were initially trained by Elman with the standard back propagation (SBP) learning algorithm which is less capable and often takes en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015